18A, 200V, 0.180 Ohm, N-Channel Power MOSFETs

These are N-Channel enhancement mode silicon gate power field effect transistors. They are advanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.

Formerly developmental type TA17422.

Features

- 18A, 200V
- $r_{DS(ON)} = 0.180 \Omega$
- Single Pulse Avalanche Energy Rated
- SOA is Power Dissipation Limited
- Nanosecond Switching Speed
- Linear Transfer Characteristics
- High Input Impedance
- Related Literature
 - TB334 “Guidelines for Soldering Surface Mount Components to PC Boards”

Ordering Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BRAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRF640</td>
<td>TO-220AB</td>
<td>IRF640</td>
</tr>
<tr>
<td>RF1S640</td>
<td>TO-262AA</td>
<td>RF1S640</td>
</tr>
<tr>
<td>RF1S640SM</td>
<td>TO-263AB</td>
<td>RF1S640</td>
</tr>
</tbody>
</table>

NOTE: When ordering, use the entire part number. Add the suffix 9A to obtain the TO-263AB variant in the tape and reel, i.e., RF1S640SM9A.

Symbol

![Symbol Diagram]

Packaging

- JEDEC TO-220AB
- JEDEC TO-263AB
- JEDEC TO-262AA
Absolute Maximum Ratings
$T_C = 25^\circ C$, Unless Otherwise Specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain to Source Breakdown Voltage</td>
<td>V_{DS}</td>
<td>$I_D = 250\mu A$, $V_{GS} = 0V$, (Figure 10)</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Drain to Gate Voltage ($R_{GS} = 20k\Omega$)</td>
<td>V_{DGR}</td>
<td>$I_D = 250\mu A$</td>
<td>200</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Drain Current</td>
<td>I_D</td>
<td>$T_C = 100^\circ C$</td>
<td>18</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulsed Drain Current (Note 3)</td>
<td>I_{DM}</td>
<td>$\pm20\mu A$</td>
<td>72</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate to Source Voltage</td>
<td>V_{GS}</td>
<td>$V_{DS} = 0V$, $T_J = 125^\circ C$</td>
<td>125</td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Power Dissipation</td>
<td>P_D</td>
<td>$T_C = 100^\circ C$</td>
<td>1.0</td>
<td>W/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single Pulse Avalanche Energy Rating (Note 4)</td>
<td>E_{AS}</td>
<td>$V_{DS} = 200V$</td>
<td>580</td>
<td>mJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Temperature for Soldering</td>
<td>T_L, T_{STG}</td>
<td>-55 to $150^\circ C$</td>
<td>300</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leads at 0.063in (1.6mm) from Case for 10s</td>
<td>T_p</td>
<td>-5 to $150^\circ C$</td>
<td>260</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electrical Specifications
$T_C = 25^\circ C$, Unless Otherwise Specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain to Source Breakdown Voltage (Note 1)</td>
<td>$B V_{DSS}$</td>
<td>$V_{DS} = 250\mu A$, $V_{GS} = 0V$</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Gate Threshold Voltage</td>
<td>$V_{GSH}(TH)$</td>
<td>$V_{GS} = V_{DS}$, $I_D = 250\mu A$</td>
<td>2</td>
<td>-</td>
<td>4</td>
<td>V</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>I_{DSS}</td>
<td>$V_{DS} = 0V$, $I_D = 250\mu A$, $T_J = 125^\circ C$</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>μA</td>
</tr>
<tr>
<td>On-State Drain Current (Note 1)</td>
<td>$I_{D(ON)}$</td>
<td>$V_{DS} > I_{D(ON)} \times r_{DS(ON)MAX}$</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Gate to Source Leakage Current</td>
<td>I_{GS}</td>
<td>$V_{GS} = \pm20V$</td>
<td>-</td>
<td>-</td>
<td>±100</td>
<td>nA</td>
</tr>
<tr>
<td>Drain to Source On Resistance (Note 1)</td>
<td>$R_{DS(ON)}$</td>
<td>$I_D = 10A$, $V_{GS} = 10V$</td>
<td>-</td>
<td>0.14</td>
<td>0.18</td>
<td>Ω</td>
</tr>
<tr>
<td>Forward Transconductance (Note 1)</td>
<td>g_{fs}</td>
<td>$V_{DS} = 10V$, $I_D = 11A$</td>
<td>6.7</td>
<td>10</td>
<td>-</td>
<td>S</td>
</tr>
<tr>
<td>Turn-On Delay Time</td>
<td>$t_{d(ON)}$</td>
<td>$V_{DD} = 100V$, $I_D = 18A$, $R_{GS} = 9.1\Omega$, $R_L = 5.4\Omega$</td>
<td>-</td>
<td>13</td>
<td>21</td>
<td>ns</td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_r</td>
<td>$V_{DS} = 10V$, $I_D = 11A$</td>
<td>-</td>
<td>50</td>
<td>77</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-Off Delay Time</td>
<td>$t_{d(OFF)}$</td>
<td>$V_{DD} = 100V$, $I_D = 18A$, $R_{GS} = 9.1\Omega$, $R_L = 5.4\Omega$, $V_{GS} = 0V$</td>
<td>-</td>
<td>46</td>
<td>68</td>
<td>ns</td>
</tr>
<tr>
<td>Fall Time</td>
<td>t_f</td>
<td>$V_{DS} = 25V$, $V_{GS} = 0V$, $f = 1MHz$</td>
<td>-</td>
<td>35</td>
<td>54</td>
<td>ns</td>
</tr>
</tbody>
</table>

NOTE:
1. $T_J = 25^\circ C$ to $125^\circ C$.

CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

©2001 Fairchild Semiconductor Corporation
Source to Drain Diode Specifications

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Source to Drain Current</td>
<td>I_{SD}</td>
<td>Modified MOSFET</td>
<td></td>
<td></td>
<td>18</td>
<td>A</td>
</tr>
<tr>
<td>Source to Drain Diode Voltage (Note 2)</td>
<td>V_{SD}</td>
<td>$T_J = 25^\circ C$, $I_{SD} = 18A$, $V_{GS} = 0V$, (Figure 13)</td>
<td></td>
<td></td>
<td>2.0</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Recovery Time</td>
<td>t_{rr}</td>
<td>$T_J = 25^\circ C$, $I_{SD} = 18A$, $dI_{SD}/dt = 100A/\mu s$</td>
<td>120</td>
<td>240</td>
<td>530</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse Recovery Charge</td>
<td>Q_{RR}</td>
<td>$T_J = 25^\circ C$, $I_{SD} = 18A$, $dI_{SD}/dt = 100A/\mu s$</td>
<td>1.3</td>
<td>2.8</td>
<td>5.6</td>
<td>μC</td>
</tr>
</tbody>
</table>

NOTES:
2. Pulse Test: Pulse width $\leq 300\mu s$, duty cycle $\leq 2\%$.
3. Repetitive Rating: Pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3).
4. $V_D = 50V$, starting $T_J = 25^\circ C$, $L = 3.37mH$, $R_O = 25\Omega$, peak $I_{AS} = 18A$.

Typical Performance Curves Unless Otherwise Specified

FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

FIGURE 3. MAXIMUM TRANSIENT THERMAL IMPEDANCE
Typical Performance Curves Unless Otherwise Specified (Continued)

FIGURE 4. FORWARD BIAS SAFE OPERATING AREA

FIGURE 5. OUTPUT CHARACTERISTICS

FIGURE 6. SATURATION CHARACTERISTICS

FIGURE 7. TRANSFER CHARACTERISTICS

FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT

FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE
Typical Performance Curves Unless Otherwise Specified (Continued)

FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT

FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE

FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE
Test Circuits and Waveforms

Figure 15: Unclamped Energy Test Circuit

Figure 16: Unclamped Energy Waveforms

Figure 17: Switching Time Test Circuit

Figure 18: Resistive Switching Waveforms

Figure 19: Gate Charge Test Circuit

Figure 20: Gate Charge Waveforms
TRADemarks

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

- ACEx™
- Bottomless™
- CoolFET™
- CROSSVOLT™
- DenseTrench™
- DOME™
- EcoSPARK™
- E²CMOS™
- EnSigna™
- FACT™
- FACT Quiet Series™
- MICROWIRE™
- OPTOLOGIC™
- OPTOPLANAR™
- PACMAN™
- POP™
- Power24™
- PowerTrench®
- QFET™
- QS™
- QT Optoelectronics™
- Quiet Series™
- SILENT SWITCHER®
- SMART START™
- STAR*POWER™
- Stealth™
- SuperSOT™-3
- SuperSOT™-6
- SuperSOT™-8
- SyncFET™
- TinyLogic™
- TruTranslation™
- UHC™
- UltraFET®

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can reasonably be expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative or</td>
<td>This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td></td>
<td>In Design</td>
<td></td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.</td>
</tr>
</tbody>
</table>
This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.