TIP102
NPN Epitaxial Silicon Darlington Transistor

Features
• Monolithic Construction with Built-in Base-Emitter Shunt Resistors
• High DC Current Gain: $h_{FE} = 1000$ @ $V_{CE} = 4$ V, $I_C = 3$ A (Minimum)
• Collector-Emitter Sustaining Voltage
• Low Collector-Emitter Saturation Voltage
• Industrial Use
• Complementary to TIP107

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Top Mark</th>
<th>Package</th>
<th>Packing Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIP102</td>
<td>TIP102</td>
<td>TO-220 3L (Single Gauge)</td>
<td>Bulk</td>
</tr>
<tr>
<td>TIP102TU</td>
<td>TIP102</td>
<td>TO-220 3L (Single Gauge)</td>
<td>Rail</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_C = 25^\circ$C unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CBO}</td>
<td>Collector-Base Voltage</td>
<td>100</td>
<td>V</td>
</tr>
<tr>
<td>V_{CEO}</td>
<td>Collector-Emitter Voltage</td>
<td>100</td>
<td>V</td>
</tr>
<tr>
<td>V_{EBO}</td>
<td>Emitter-Base Voltage</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>I_C</td>
<td>Collector Current (DC)</td>
<td>8</td>
<td>A</td>
</tr>
<tr>
<td>I_{CP}</td>
<td>Collector Current (Pulse)</td>
<td>15</td>
<td>A</td>
</tr>
<tr>
<td>I_B</td>
<td>Base Current (DC)</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>T_J</td>
<td>Junction Temperature</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage Temperature Range</td>
<td>-65 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>
Thermal Characteristics

Values are at \(T_C = 25^\circ C \) unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_C)</td>
<td>Collector Dissipation ((T_A = 25^\circ C))</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>Collector Dissipation ((T_C = 25^\circ C))</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

Electrical Characteristics\(^{(1)}\)

Values are at \(T_C = 25^\circ C \) unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CEO(sus)})</td>
<td>Collector-Emitter Sustaining Voltage</td>
<td>(I_C = 30 \text{ mA}, I_B = 0)</td>
<td>100</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(I_{CEO})</td>
<td>Collector Cut-Off Current</td>
<td>(V_{CE} = 50 \text{ V}, I_B = 0)</td>
<td>50</td>
<td>(\mu \text{A})</td>
<td></td>
</tr>
<tr>
<td>(I_{CBO})</td>
<td>Collector Cut-Off Current</td>
<td>(V_{CB} = 100 \text{ V}, I_E = 0)</td>
<td>50</td>
<td>(\mu \text{A})</td>
<td></td>
</tr>
<tr>
<td>(I_{EBO})</td>
<td>Emitter Cut-Off Current</td>
<td>(V_{EB} = 5 \text{ V}, I_C = 0)</td>
<td>2</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>(h_{FE})</td>
<td>DC Current Gain</td>
<td>(V_{CE} = 4 \text{ V}, I_C = 3 \text{ A})</td>
<td>1000</td>
<td>20000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CE} = 4 \text{ V}, I_C = 8 \text{ A})</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{CE(sat)})</td>
<td>Collector-Emitter Saturation Voltage</td>
<td>(I_C = 3 \text{ A}, I_B = 6 \text{ mA})</td>
<td>2.0</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_C = 8 \text{ A}, I_B = 80 \text{ mA})</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{BE(on)})</td>
<td>Base-Emitter On Voltage</td>
<td>(V_{CE} = 4 \text{ V}, I_C = 8 \text{ A})</td>
<td>2.8</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(C_{ob})</td>
<td>Output Capacitance</td>
<td>(V_{CB} = 10 \text{ V}, I_E = 0, f = 0.1 \text{ MHz})</td>
<td>200</td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

Note:

1. Pulse test: \(\text{pw} \leq 300 \mu \text{s}, \text{duty cycle} \leq 2\% \).
Typical Performance Characteristics

Figure 1. Static Characteristic

Figure 2. DC Current Gain

Figure 3. Collector-Emitter Saturation Voltage and Base-Emitter Saturation Voltage

Figure 4. Collector Output Capacitance

Figure 5. Safe Operating Area

Figure 6. Power Derating
Physical Dimensions

Figure 7. TO-220, MOLDED, 3LEAD, JEDEC VARIATION AB

NOTES:
A) REFERENCE JEDEC, TO-220, VARIATION AB
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS COMMON TO ALL PACKAGE SUPPLIERS EXCEPT WHERE NOTED [].
D) LOCATION OF MOLDED FEATURE MAY VARY (LOWER LEFT CORNER, LOWER CENTER AND CENTER OF THE PACKAGE)
 DOES NOT COMPLY JEDEC STANDARD VALUE.
F) "A1" DIMENSIONS AS BELOW:
 SINGLE GAUGE = 0.51 ± 0.061
G) DRAWING FILE NAME: TO220B03REVII
H) PRESENCE IS SUPPLIER DEPENDENT.
I) SUPPLIER DEPENDENT MOLD LOCKING HOLES IN HEATSINK.
J) Fairchild Semiconductor
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
Avinda™
AX-CAP™
BitSiC™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED®
Dual Cool™
EcoSPARK®
EfficientMax™
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT™
FAST™
FastvCore™
FETBench™
FPS™

OPTOPLANAR®
OPTOLOGIC®

SYSTEM GENERAL®
TinyBoost™
TinyBuck™
TinyCalc™
TinyLogic™
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
TransSiC™
TriFault Detect™
TRUECURRENT™
μSerDes™
UHC™
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™
Xsens™
仙童™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT HTTP://WWW.FAIRCHILDSEMI.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise.

Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications of a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>